On the Jacobian conjecture

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Jacobian Conjecture

The Jacobian Conjecture can be generalized and is established : Let S be a polynomial ring over a field of characteristic zero in finitely may variables. Let T be an unramified, finitely generated extension of S with T = k . Then T = S. Let k be an algebraically closed field, let k be an affine space of dimension n over k and let f : k −→ k be a morphism of algebraic varieties. Then f is given ...

متن کامل

On Jacobian conjecture

Any endomorphism of Cn defined by n polynomials with everywhere non-vanishing Jacobian is an automorphism. The Jacobian conjecture originated fromKeller ([5]). Let F1, . . . , Fn ∈ C[x1, . . . , xn] be a set of n polynomials in n variables with n ≥ 1 such that the Jacobian of these polynomials is a nonzero constant. The Jacobian conjecture says that the subalgebra C[F1, . . . , Fn] of C[x1, . ....

متن کامل

A Note on the Jacobian Conjecture

In this paper we consider the Jacobian conjecture for a map f of complex affine spaces of dimension n. It is well-known that if f is proper then the conjecture will hold. Using topological arguments, specifically Smith theory, we show that the conjecture holds if and only if f is proper onto its image.

متن کامل

On the Jacobian Conjecture and Its Generalization

The Jacobian Conjecture can be generalized and is established : Let S be a polynomial ring over a field of characteristic zero in finitely may variables. Let T be an unramified, finitely generated extension of S with T = k. Then T = S. Let k be an algebraically closed field, let k be an affine space of dimension n over k and let f : k −→ k be a morphism of algebraic varieties. Then f is given b...

متن کامل

Recent progress on the Jacobian Conjecture

In this paper we describe some recent developments concerning the Jacobian Conjecture(JC). First we describe Drużkowski’s result in [6] which asserts that it suffices to study the JC for Drużkowski mappings of the form x + (Ax)∗3 with A = 0. Then we describe the authors’ result of [2] which asserts that it suffices to study the JC for so-called gradient mappings i.e. mappings of the form x − ∇f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 1993

ISSN: 0022-4049

DOI: 10.1016/0022-4049(93)90130-l